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Selectivity profile of afatinib for EGFR-mutated
non-small-cell lung cancer†

Debby D. Wang,ab Victor H. F. Lee,*c Guangyu Zhu,d Bin Zou,b Lichun Mab and
Hong Yanb

EGFR-mutated non-small-cell lung cancer (NSCLC) has long been a research focus in lung cancer

studies. Besides reversible tyrosine kinase inhibitors (TKIs), new-generation irreversible inhibitors, such as

afatinib, embark on playing an important role in NSCLC treatment. To achieve an optimal application of

these inhibitors, the correlation between the EGFR mutation status and the potency of such an inhibitor

should be decoded. In this study, the correlation was profiled for afatinib, based on a cohort of patients

with the EGFR-mutated NSCLC. Relying on extracted DNAs from the paraffin-embedded tumor samples,

EGFR mutations were detected by direct sequencing. Progression-free survival (PFS) and the response

level were recorded as study endpoints. These PFS and response values were analyzed and correlated to

different mutation types, implying a higher potency of afatinib to classic activation mutations (L858R and

deletion 19) and a lower one to T790M-related mutations. To further bridge the mutation status with

afatinib-related response or PFS, we conducted a computational study to estimate the binding affinity in

a mutant–afatinib system, based on molecular structural modeling and dynamics simulations. The

derived binding affinities were well in accordance with the clinical response or PFS values. At last, these

computational binding affinities were successfully mapped to the patient response or PFS according to

linear models. Consequently, a detailed mutation-response or mutation-PFS profile was drafted for

afatinib, implying the selective nature of afatinib to various EGFR mutants and further encouraging the

design of specialized therapies or innovative drugs.

1 Introduction

Somatic mutations in the epidermal growth factor receptor
(EGFR) have been identified in a subset of non-small-cell lung
cancer (NSCLC),1–4 defining a novel NSCLC subgroup that
exquisitely depends on the EGFR signaling network.5–7 The
EGFR signaling, which plays a central role in cancer progres-
sion and malignancy,5,8 is briefly outlined in Fig. 1a. A multi-
tude of EGFR mutations can induce aberrant signaling9 by
promoting or stabilizing the catalytic activity of the tyrosine kinase
(TK) domain,1,2 and this is well validated as a cancer-prompting
mechanism.1,2,8 Such mutations normally correspond to exons

18 to 21 in the EGFR gene and cluster around the ATP-binding
pocket of the TK domain.6,10 The most frequently occurring ones,
termed classical activating mutations, include in-frame deletions
around the residues 746 to 750 of exon 19 (45–50% of all), and the
Leu858Arg (L858R) point mutation in exon 21 (40–45% of all).11–13

A number of therapeutic agents, which reversibly inhibit the
TK domain of EGFR (Fig. 1b), have been developed and broadly
used in NSCLC treatment.8–10,14 First-generation TK inhibitors
(TKIs) are represented by gefitinib and erlotinib,1–3,9,15 and
showed high anti-tumor activity in patients with the EGFR-
mutated NSCLC.14,16 In particular for those with classical
activating mutations, the use of EGFR TKIs led to a high
objective response rate, and prolonged progression-free survival
(PFS) and overall survival (OS).2,16,17 However, these patients
eventually developed an acquired resistance to the TKIs, com-
monly characterized by the gatekeeper mutation T790M (corres-
ponding to the acquired TKI resistance in 50–60% of
patients).14,16,18,19 A well-established explanation is that steric
blocking of the binding with TKIs has been caused by this
mutation,20 which directly results in a low binding affinity
between this mutant and the TKIs.18–20 In this regard, the
binding affinity between an EGFR TK mutant and a TKI can be
a valuable indicator of the sensitivity/resistance to TKIs.2,10,18,20
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Based on the binding affinity, both experimental (direct binding
assays and surface plasmon resonance (SPR) techniques)8,19,20

and computational (molecular modeling and simulations)10,21–25

studies have contributed to a substantially improved understanding
of TKI-resistant mechanisms in cancer promotion. The knowledge,
meanwhile, triggers the rapid development of innovative agents for
the treatment of EGFR-mutated NSCLC.8,10,14

Afatinib (BIBW 2992; N-[4-[(3-chloro-4-fluorophenyl)amino]-
7-[[(3S)-tetrahydro-3-furanyl]oxy]-6-quinazolinyl]-4-(dimethylamino)-
2-butenamide)14,16,26,27 is a second-generation EGFR-family
inhibitor, which covalently binds to an EGFR-family receptor
and irreversibly blocks the downstream signaling (Fig. 1c).5,8,14

The composition of afatinib and its primary reactive group
(acrylamide),16,28,29 capable of Michael addition to the conserved
cysteine residue within an EGFR TK domain (Cys797),16,30,31 are
presented in Fig. 1d and e. The preclinical in vitro and in vivo
activity profiles of afatinib guaranteed its high potency against
NSCLCs harboring the classic activation mutations (L858R and
deletion 19),8,14,16 and its potency, albeit lower, against those
having the gatekeeper mutation (T790M).14,26,32 Similarly, the
binding affinity of a mutant with afatinib can be a simplified
estimate of afatinib potency.8,33,34 The studies of mutant–afatinib
affinities can also be supported by experimental assays (SPR and
biomolecular interaction analysis (BIA) techniques)8,26 or com-
putational simulations.10,23 Importantly, these studies further

prompt the investigation of afatinib in the treatment of patients
with EGFR-mutated NSCLC.

In order to achieve an optimal use of afatinib in EGFR-
mutated NSCLC, an exploration of its selectivity and binding
mode with an EGFR mutant is of paramount importance.8,14,16

Specifically, the correlation, which is between the binding
mode in a mutant–afatinib complex and the PFS/response in
patient treatments, should be dissected. In our study, for a
cohort of patients with the EGFR-mutated NSCLC, their tumor
progression, characterized by PFS or objective responses, was
evaluated after a prescription of oral afatinib. These observations
were then analyzed in detail. Moreover, computational modeling
and simulations10,14 were implemented to investigate the involved
EGFR TK mutants and their binding modes with afatinib, from a
molecular perspective. Importantly, such binding modes corre-
lated well with the afatinib-related PFS/responses.

2 Results and discussion
2.1 Patient characteristics

This study was performed on a cohort of 18 patients, who were
diagnosed as having advanced (stage IV) NSCLC, in the Queen
Mary Hospital in Hong Kong. These patients were treated and
followed up during December 2010 to October 2014, and their
demographic characteristics are described in Table 1. Specifi-
cally, eight (44%) of them were females and ten (56%) were
males, with their age varying from 48 to 68. Merely four patients
(22%) were heavy smokers, and the others (78%) were non-
smokers. All of them suffered from adenocarcinoma. Further-
more, among these patients, fifteen (83%) were prescribed with
afatinib as a first-line treatment, and three (17%) as a third-line
treatment with confirmed T790M and exon 19 deletion muta-
tions by tumor re-biopsy immediately before starting afatinib.
For those three patients, gefitinib or elotinib was used as their
first-line TKI and systemic platinum-based chemotherapy was
employed as the second-line treatment.

2.2 EGFR mutation screening and afatinib inhibition profiles

For each individual patient, DNA was extracted from the
formalin-fixed paraffin-embedded (FFPE) tumor tissues.35,36

Based on the polymerase chain reaction (PCR) amplification
of exons 18 to 21 in the EGFR TKI-binding domain, direct
sequencing was implemented to reveal the EGFR somatic
mutations.14,35 Table 2 presents the mutation profile of our
patient group. To provide a thorough analysis, we examined the
mutations in terms of positions, subtypes and their distribu-
tions. As shown in Fig. 2a, the patients primarily harbor exon
mutations in positions 19 to 21. Furthermore, single-point
(one exon) mutations occupy the majority, among which
deletion 19 and L858R mutations are the most important (Fig. 2b).
In particular, all the multi-point mutations are T790M-involved
(Fig. 2b). For individual mutation types, the detailed distribution
is displayed in Fig. 2c, in which the frequently-occurring types are
delE746_A750 and L858R.

Fig. 1 EGFR signaling and EGFR-targeted TKIs. (a) A profile of EGFR
signaling. (b) EGFR-targeted reversible TKIs. (c) EGFR-targeted irreversible
TKIs. (d) The composition of a second-generation TKI (afatinib) and its
primary reactive group (acrylamide). The chemical composition structure
is from DrugBank (DB08916). (e) The Michael reaction between afatinib
and the cysteine (Cys797) residue of an EGFR TK domain. The chemical
composition structure is from DrugBank (DB08916).
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All of our patients received afatinib at their own expense.
Majority of them received it at a dose of 40 mg daily except for
one patient who started at 50 mg daily, all at the discretion of
treating oncologists. Afatinib would be suspended if severe
grade 3 or above drug-related adverse events emerged, and be
resumed at a reduced dose when a better symptom was
observed. Specifically for our patients, the common adverse
events included rash, diarrhea, electrolyte disturbance and
impaired liver function. Merely three patients (17%) received
dose reduction due to severe adverse events.

During the afatinib therapy, PFS was recorded for each
individual as the primary endpoint, and the objective
response and disease control as the secondary endpoints.
The detailed PFS or response list is presented in Table 2,
and distribution analyses of such PFS/response values are
shown in Fig. 2d–g.

In Fig. 2d, the responses of various patients to afatinib, with
an average of 2.5, are shown. Response levels were stratified
into four groups (1 = complete response [CR], 2 = partial
response [PR], 3 = stable disease [SD], and 4 = progressive
disease [PD]), where a lower value represents a better objective
response. For those patients who received afatinib as a third-
line treatment, the average response level is larger than that of
patients having the first-line afatinib. This is possibly due to the
T790M-involved mutations that all patients with sub-line afatinib
harbored, resulting in a lower efficacy of afatinib. Similarly, PFS
values concerning different patients are scattered in Fig. 2e,
where a higher value denotes a better efficacy of afatinib. Also,
patients prescribed with afatinib as a third-line treatment had
shorter PFS values than the others who received it as first-line
therapy.

To further evaluate the correlation between the afatinib-
related response and PFS with an EGFR mutation type, we
derived the response or PFS for each mutation. For each
patient subgroup harboring the same mutation type, their
median response level to afatinib was regarded as the
response to this mutation. The responses sorted in an ascend-
ing manner are displayed in Fig. 2f, where deletion 19 and
L858R mutations correspond to better responses. Meanwhile,
PFS values for various mutation types are presented in
Fig. 2g, in a descending order. Owing to a large variation of
PFS among patients, the PFS or averaged PFS, corresponding
to the median response in a patient subgroup, was defined as
the PFS for a mutation. As exhibited in Fig. 2g, delE746_A750
and L858R possess longer PFSs, while T790M-involved muta-
tions are lower ranked. Such results are in good agreement
with early studies of the EGFR-mutated NSCLC.8,14,16,26,32

Table 2 The profile of EGFR mutations and afatinib efficacies. EGFR
mutation types of our patients, respectively, at the DNA level (exons 19
to 21) and the protein level (residues 746 to 861), are listed in this table.
Patient objective responses to afatinib and the PFS values (in months) are
summarized as well

Patient
no.

EGFR DNA
mutation EGFR mutation

Best
response
to afatinib

PFS
(month)

1 exon 19 +
exon 20 +
exon 21

T790M_L833V_delE746_A750 3 5.98

2 exon 19 +
exon 20

T790M_delE746_A750 2 3.58

3 exon 19 delE746_A750 2 17.31
4 exon 19 delE746_A750 2 21.82
5 exon 21 L858R 2 30.23
6 exon 20 +

exon 21
L858R_T790M 3 9.59

7 exon 19 delL747_P753insS 2 6.57
8 exon 19 delL747_T751 2 13.9
9 exon 20 S768I 3 6.64
10 exon 20 P772S_dulS768_D770 4 3.25
11 exon 21 L858R 1 12.81
12 exon 21 L861Q 3 10.94
13 exon 19 delE746_A750 2 9.92
14 exon 21 L858R 4 0.85
15 exon 21 L858R 2 8.18
16 exon 21 L858R 2 9.2
17 exon 19 delE746_A750 2 16.39
18 exon 19 +

exon 20
T790M_delE746_A750 4 0.3

Table 1 Characteristics of our advanced-NSCLC patients including age, sex, smoking history, performance status, histology and the TKI used in the first-
line treatment

Patient no. Age Sex Smoking history Performance status Histology First-line TKI

1 60 Male Non-smoker 1 Adenocarcinoma Erlotinib
2 50 Male Heavy smoker 2 Adenocarcinoma Erlotinib
3 65 Male Non-smoker 1 Adenocarcinoma Afatinib
4 64 Female Non-smoker 1 Adenocarcinoma Afatinib
5 68 Male Non-smoker 1 Adenocarcinoma Afatinib
6 57 Female Non-smoker 1 Adenocarcinoma Afatinib
7 52 Female Non-smoker 1 Adenocarcinoma Afatinib
8 63 Male Non-smoker 2 Adenocarcinoma Afatinib
9 65 Male Heavy smoker 1 Adenocarcinoma Afatinib
10 48 Female Heavy smoker 2 Adenocarcinoma Afatinib
11 63 Male Non-smoker 1 Adenocarcinoma Afatinib
12 51 Female Non-smoker 1 Adenocarcinoma Afatinib
13 62 Male Non-smoker 1 Adenocarcinoma Afatinib
14 50 Female Non-smoker 2 Adenocarcinoma Afatinib
15 65 Male Heavy smoker 2 Adenocarcinoma Afatinib
16 60 Female Non-smoker 2 Adenocarcinoma Afatinib
17 61 Female Non-smoker 2 Adenocarcinoma Afatinib
18 60 Male Non-smoker 2 Adenocarcinoma Gefitinib
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2.3 Computational modeling results of mutant–afatinib
binding affinities

An advanced computational study was carried out to model the
mutant–afatinib binding affinities for our patients, and corre-
late these affinities to the above-mentioned responses or PFS
values. This study can assist the construction of a detailed
mutation-response or mutation-PFS profile for afatinib. AMBER
MD simulations21 and structural modeling were the primary
techniques used in this study. Each mutant–afatinib binding
affinity can be computationally estimated by the free energy
difference between the mutant–afatinib complex (C) and the two
isolated molecules (A and B) in solvent environments (Fig. 3a).

2.3.1 Modeling results of EGFR mutant–afatinib complexes.
For each mutant, the structural modeling of its bound com-
plex (C) with afatinib should be accomplished in advance.
Our mutant structures were collected from various literature
reports10,37 for preparation. Based on a structural template
(PDB:2ITY), computational modeling software, scap,38 loopy39

and ROSETTA,40 were adopted for the structural determination
in these studies.

Similarly, a structural template (PDB:4G5P) was downloaded
from the PDB for the modeling of EGFR mutant–afatinib
complexes. This template contains an EGFR kinase mutant
(T790M) that is covalently bound with afatinib, and each
prepared mutant was aligned to the template prior to the
modeling. As afatinib binds to the conserved cysteine residue
at position 797 (Cys797) of an EGFR kinase, the afatinib–
cysteine block can be regarded as a building block for each
mutant–afatinib complex (Fig. 3b). This is well in accordance
with AMBER, which treats residues as building blocks for
protein systems and builds force fields based on pair-wise
charges. After deriving the atomic charges of the afatinib–
cysteine block, we can insert this block into the corresponding
position of each mutant with the assistance of AMBER.

For the afatinib–cysteine fragment, capping at its head (Ace)
and tail (Nme) was first implemented (Fig. 3b). R.E.D. was
subsequently adopted for RESP charge derivation of this
capped fragment. Geometry optimization (GAMESS), MEP
calculation and charge fitting (RESP) comprised this calcula-
tion. Specifically in the geometry optimization, a strict density
convergence criterion (1.0 � 10�6) was used in the direct

Fig. 2 EGFR mutation profile and afatinib efficacy analysis of the patients. (a) EGFR mutation positions (exons 18 to 21) of the NSCLC patients. (b) EGFR
mutation subtypes of the NSCLC patients. (c) Specific EGFR mutation types of the NSCLC patients. (d) Responses to afatinib during the TKI therapies, with
first-line and sub-line treatments considered. (e) PFS values of afatinib during the therapies, with first-line and sub-line treatments considered.
(f) Responses to afatinib regarding different mutation types. (g) PFS values of afatinib regarding different mutation types.
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self-consistent field (SCF) calculation, to achieve a refined
geometry. Depending on the derived charges, those of the
fragment were extracted, after which the fragment was inserted
into each aligned mutant to form its complex with afatinib
(Fig. 3b). Such complexes were used in later AMBER simulations.

In Fig. 3c–f, several modeled WT– or mutant–afatinib com-
plexes are comparably presented, regarding wild type (WT)
EGFR, L858R, T790M, and L858R_T790M, with the afatinib–
cysteine blocks and mutated residues colored. Before the
binding affinity calculation, each complex or mutant was care-
fully checked for missing residues, and such residues were
added based on templates PDB:3GOP/PDB:1M17 as a refine-
ment. These rough models with equal lengths were further
structurally optimized using AMBER simulations (30 000 steps),
with a QM/MM setting on the afatinib–cysteine blocks.

2.3.2 MD simulations and parameterization results. Once
we obtained the structures of those mutants and mutant–
afatinib complexes, we estimated the mutant–afatinib binding
affinities based on MD simulations. As previously elucidated,
this binding affinity can be roughly expressed by the free energy
difference between the complex (C) and the two isolated
molecules (A and B) in a solvent environment.

The relative free energy calculation adopted by AMBER can
provide more accurate results for binding systems. In our

studies, the relative free energies of each mutant and the
corresponding mutant–afatinib complex were calculated;
meanwhile, those of each mutant and its ligand (afatinib) were
derived. The binding affinity can be then estimated based on
these relative energies.

Prior to the relative free energy calculation, the dynamics of
involved systems should be simulated. First, for a mutant
and its afatinib-binding complex, the template PDB:4RIW
(EGFR-ErbB3 TK heterodimer) was used to combine them as
a heterodimer system. Specifically, the mutant and the complex
were aligned to the two monomers in the TK heterodimer
template, with the assistance of Chimera.41 The system was
then computationally solvated in a solvent environment, repre-
sented by a truncated octahedron TIP3P water box (10-A buffer).21

Two minimization steps, with or without position constraints on
the system, were implemented for structural optimization. The
convergence of each minimization was examined to guarantee a
reliable simulation scenario. In particular, for the afatinib–
cysteine block, a QM/MM setting was utilized for a careful
treatment of the drug-binding residue. Before the production
MD simulations, a series of equilibration operations were adopted
for each system. In detail, these operations include, a 50 ps
heating from 100 K to 300 K, a 25 ps density equilibration and a
250 ps constant pressure equilibration at 300 K.10,21 The
simulation parameters were selected because of the stable
equilibrations that the density, temperature and total energy
achieved. Such equilibrations of the L858R-involved system are
displayed in Fig. 4a–c. Successively, a 2.5 ns production MD
simulation was carried out for later free energy calculation. The
QM/MM setting of the afatinib–cysteine block remained during
the simulation. In order to derive a promising production
simulation, we implemented several consecutive short simula-
tions (500 ps for each) and observed the backbone RMSD curve
of the involved solute. Trajectory frames at every picosecond,
namely 500 frames in each short production simulation, were
collected. An example of the backbone RMSD curves corres-
ponding to these short simulations (involving L858R) is presented
in Fig. 4d, which indicates good stabilization at 2.5 ns. Other
examples of the systems, respectively, involving L858R_T790M,
T790M and WT are presented in Fig. 4e–h, i–l, and m–p.

The calculation of relative free energies of each mutant and
afatinib can be similarly implemented. PDB:4G5P was adopted as
a template, where afatinib was untied from the covalent associa-
tion with EGFR. The untied afatinib was structurally refined by
adjusting the hydrogen atoms, adding missing atoms, and opti-
mizing its geometry (GAMESS with a strict convergence criterion
of 1.0 � 10�8). Additionally, R.E.D. was used for the charge
derivation of this small molecule, for later AMBER simulations.
Each mutant was then aligned to the template to form a non-
covalent association with the isolated afatinib. After the computa-
tional solvation of such a system, a whole simulation procedure
includes two short minimizations, a 50-ps heating, a 25-ps density
equilibration, a 250-ps constant pressure equilibration and a
1.5-ns production simulation. The parameter selection was also
based on the stabilization of each system (density, temperature,
total energy and backbone RMSD of solute).

Fig. 3 Computational modeling of EGFR mutant–afatinib complexes and
the binding affinities. (a) A covalently bound system (A + B - C). (b) The
modeling of a mutant–afatinib complex based on a structural template.
(c) Modeling result of the WT–afatinib complex, with sites 790 (THR),
797 (afatinib-binding site) and 858 (LEU) labeled. (d–f) Several instances of
the modeled mutant–afatinib complexes, regarding L858R, T790M and
L858R_T790M, with the mutated residues and afatinib–cysteine blocks
labeled.
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2.3.3 Binding affinity calculation results. Using the simula-
tion trajectory of each system ({B,C} or {A,B}), the MM/PB(GB)SA
module26 of AMBER calculates the relative free energies of the
solvated solutes. Accordingly, both the PB and GB models were
implemented in our work for a comparable study. The entropy
contribution (�TDS) was ignored to ease the computational load in
our calculations. In this regard, the objective free energy difference
(DGbind,solv) can be simplified to DE + DDGsolv (Table S1, ESI†). In
Fig. 5a, such free energy differences and the entropy contributions
regarding our mutant–afatinib systems are displayed. Here the
entropy terms are similar for these systems, thus they can be
reasonably eliminated.

In Fig. 5b and c, we further rank the free energy differences
(GB or PB model) in an ascending order. As interpreted
previously, a lower free energy difference indicates a better
binding affinity. In this ranking list, L858R and deletion 19
mutants are the top ones, while the T790M-involved mutants
are comparably lower-ranked. Here delL747_T751 can be
regarded as an outlier due to its high positive value, which
may result from the inaccurate structural modeling. This
should be improved in our future studies. Moreover, the free
energy differences, regarding the mutations harbored by
patients with first-line afatinib, were averaged, and so were

those corresponding to sub-line afatinib. As displayed, the first-
line average is lower than the sub-line one for both models.
These results are in good agreement with our clinical observa-
tions of the response levels and PFS values for the corres-
ponding mutations.

Next, Fig. 5d presents the distribution of free energy differ-
ence (GB model) vs. the response level for all mutation types
that emerged in our patients. Regardless of delL747_T751, a
lower free energy difference basically corresponds to a better
response level (1 = [CR], 2 = [PR], 3 = [SD], and 4 = [PD]). Besides,
boundaries can be estimated for different groups of response
levels, constructing a rough mutation-response profile for
afatinib. Furthermore, we scatter the mutations for a free
energy difference-PFS distribution in Fig. 5f, where the points
corresponding to first-line PFS values and sub-line PFS values
are separately colored. Based on this distribution with the
outlier ignored, a linear first-line trendline and an overall one
were resolved. These two trendlines (first-line: PFS = �0.0454 �
free energy difference + 7.1358 with p-values of [0.4782, 0.1482]
for the two coefficients, overall: PFS = �0.0737 � free energy
difference + 4.6907 with p-values of [0.1552, 0.1534] for the two
coefficients) are quite similar and draft the mutation-PFS
profile for afatinib. The results regarding the PB model are

Fig. 4 Simulation stabilization of several systems each containing an EGFR mutant and the mutant–afatinib complex. (a–c) Density, temperature and
total energy curves of the system involving L858R and its complex with afatinib, before the production simulation. (d) The backbone RMSD curve of the
system involving L858R and its complex with afatinib, in the 2.5 ns production simulation phase. (e and h) Stabilization curves of the system containing
delE746_A750 and the delE746_A750–afatinib complex. (i and l) Stabilization curves of the system containing L858R_T790M and the L858R_T790M–
afatinib complex. (m and p) Stabilization curves of the system involving delL747_P753insS and the delL747_P753insS–afatinib complex.
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listed in Fig. 5e and g (first-line: PFS = �0.0513 � free energy
difference + 7.2505 with p-values of [0.3667, 0.0811] for the two
coefficients, overall: PFS = �0.0687 � free energy difference +
5.4418 with p-values of [0.1390, 0.0628] for the two coefficients).
Here the PB model is more confident than the GB one, and in
future studies more data should be collected to improve the
modeling confidence.

At last, we compared the computational afatinib potency
with the experimental one, to verify its reliability. The inhibi-
tory constant (nM), which evolved from biologically resolved
EC50 or IC50 values, is broadly used to measure the potency
of an inhibitor.8,26 Collected from a number of literature
studies,8,26,42 the inhibitory constants of afatinib to several
representative EGFR-family receptors (Table S2, ESI†) are
shown in Fig. 5h. A lower inhibitory constant represents a
higher potency, resulting in the potency ranking of several well-
acknowledged EGFR kinases (L858R 4 WT 4 L858R_T790M) in
Fig. 5i. Our computational afatinib potencies (�(DE + DDGsolv)) for
these kinases, based on the GB model (Fig. 5i), are well in
accordance with the experimental ones. This can partly validate

the reliability of our computations. The results concerning the PB
model should be further polished in future studies due to the
occurrence of small positive values of free energy difference.

2.4 Conclusion and discussion

EGFR-mutated NSCLC has become an innovative and appealing
target in cancer research and drug discovery.2,5,6 Aside from the
first-generation reversible inhibitors of EGFR-family receptors,1–3

new-generation inhibitors, such as afatinib,14,16,26,27 that irrever-
sibly bind to those receptors were explored and developed.
Decoding the correlations between afatinib potency and EGFR
mutation status can provide a thorough support to the optimal
use of such inhibitors. Recently, computational biology has
been growing rapidly and serves as a creditable tool in these
studies.10,21,23

In this work, a group of patients with EGFR-mutated NSCLC
were studied. Their detailed EGFR mutation types were bio-
logically screened prior to their treatment with oral afatinib,
and the cancer progression of each patient was carefully
followed up. Specifically, PFS and response level were two

Fig. 5 Analyses of the computationallyresolved binding affinities in mutant–afatinib systems. (a) Simplified free energy differences (DE + DDGsolv) solved
by the GB or PB model and the entropy term (�TDS) for various mutant–afatinib systems. (b and c) Ranked free energy differences from (a). Here
averaged free energy differences, respectively, of the mutations regarding first-line-afatinib treatments and those corresponding to sub-line-afatinib
treatments, are displayed. (d) Distribution of the free energy difference (GB model) vs. response level, with an outlier marked. (e) Distribution of the free
energy difference (PB model) vs. response level, with an outlier marked. (f) Distribution of the free energy difference (GB model) vs. PFS, with trendlines
presented and an outlier marked. (g) Distribution of the free energy difference (PB model) vs. PFS, with trendlines presented and an outlier marked. (h)
Experimentally resolved inhibitory constants of afatinib for different EGFR-family receptors. (i) Ranking of afatinib potency for EGFR kinases with
reference to (g). (j) Ranking of computationally resolved afatinib potency for EGFR kinases, with both the GB and PB models considered.
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major indicators of drug effectiveness. Supported by the
collected patient data, we detected that the classic activating
mutations (L858R and exon 19 deletion) normally resulted in
better afatinib-related responses or PFS values, while those
involving the T790M mutation mostly perform worse during
treatment. To further bridge the EGFR mutation status and the
response/PFS, we conducted a computational study. In
advance, all EGFR mutant–afatinib covalent complexes were
structurally modeled. Depending on MD simulations, the free
energy difference between each complex system and the corres-
ponding two isolated molecules were estimated as the mutant–
afatinib binding affinity. This binding affinity was then
mapped to the afatinib-related response or PFS, to briefly
construct a mutation-selectivity profile for afatinib.

As a dynamic process, the binding kinetics of a mutant–
afatinib system can also be an important aspect for measuring
the potency/escape of afatinib. For additional discussion, the
free energy differences for mutant–afatinib non-covalent sys-
tems (each containing the untied afatinib and a mutant) were
calculated and further investigated in Fig. 6. Fig. 6a and b
present the distributions of such free energy differences for the
two GB/PB models. In Fig. 6c and d, we combined the two kinds

of free energy differences (covalent and non-covalent) using a
summation operation, and the p-values for the trendline coeffi-
cients are [0.1870, 0.7233] and [0.1738, 0.4786]. Depending on a
subtraction operation, the combination of the two kinds of free
energy differences is displayed in Fig. 6e and f, with the
p-values of [0.1273, 0.0013] and [0.1113, 0.0011] for the trend-
line coefficients, respectively. Compared to Section 2.3.3, the
subtraction operation improves the confidence of the trend-
lines. This subtraction operation was also implemented in
the response analysis (Fig. 6g and h), resulting in a marginal
improvement of the boundary determination. In future studies,
this computational model should be further improved by
taking into account more factors and operations. Besides, more
data should be collected to increase the credibility and accuracy
of this model. These studies can greatly promote optimal drug
application and new drug exploration.

3 Experimental

All clinical data were collected from the Queen Mary Hospital in
Hong Kong, and our study was implemented anonymously with

Fig. 6 Supplementary analyses of mutant–afatinib non-covalent systems. (a and b) Distribution of free energy difference (GB or PB model) vs. PFS for
various mutant–afatinib non-covalent systems. (c and d) Combination of the two kinds of free energy differences (covalent and non-covalent) in the PFS
analysis using a summation operation, based on either the GB or PB model. The trendlines for majority of the points are shown. (e and f) Combining the
two kinds of free energy differences (covalent and non-covalent) in the PFS analysis using a subtraction operation, based on either the GB or PB model.
The trendlines for majority of the points are shown. (g and h) Combining the two kinds of free energy differences (covalent and non-covalent) in the
response analysis using a subtraction operation, based on either the GB or PB model. Rough boundaries between different response groups are
displayed.
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the consent of all participated patients. This study was
approved by the ethics committee – Institutional Review Board
of the University of Hong Kong/Hospital Authority Hong Kong
West Cluster (HKU/HA HKW IRB) – before commencement.

3.1 Patients and EGFR mutation screening

Incipiently, a cohort of patients diagnosed with stage IV meta-
static NSCLC was identified between December 2010 and
October 2014 in the hospital. Tumor stage was judged accord-
ing to the TNM classification system by an independent
review.14 All these patients harbored EGFR mutations, which
were evaluated prior to TKI therapy. Assisted by formalin-fixed
paraffin-embedded (FFPE) tumor biopsy samples, the screening
of EGFR mutations for individual patients was performed.35,36

Specifically, tumor cells of each patient were first enriched by
microdissection, followed by the extraction of the genetic DNA
(QIAmp DNA FFPE tissue kit).35 EGFR exons 18 to 21 were
amplified with intron-based primers1,2,35,36 by polymerase
chain reaction (PCR), leading to a bi-directional sequencing
of the PCR products.35,36 Rare or multi-point mutations were
verified by repeated PCR and sequencing, with the normal DNA
sequenced as in ref. 36.

3.2 Patient treatment and PFS/response analysis

All patients were recommended to receive self-financed afatinib
in their treatments, until disease progression, intolerable
adverse events, or self-withdrawal.14,35 All patients received a
starting dose of 40 mg daily, except for one patient who started
the medication at 50 mg daily, at the discretion of treating
oncologist. Adverse events were assessed every 4 weeks and
graded according to the National Cancer Institute-Common
Terminology Criteria for Adverse Events (CTCAE) version 3.0.35

If grade 3 or higher drug-related adverse events emerged,
afatinib would be suspended for up to 14 days and be resumed
until recovery to grade 1 or lower. Upon resuming the drug,
dose reduction to one dose-level lower was implemented.
Afatinib would be permanently discontinued if grade 3 or
higher adverse events developed at a dose of 30 mg daily.
Tumor assessment was implemented by computed tomography
(CT) scan or positron emission tomography with integrated CT
(PET-CT) scan every 12 weeks, and the objective response was
determined by Response Evaluation Criteria in Solid Tumors
(RECIST) version 1.1.14

The primary study endpoint was progression-free survival
(PFS), defined as the time from TKI-commencement to disease
progression or death.5,35 Our secondary endpoints were objective
response (complete response [CR] or partial response [PR]) and
disease control (stable disease [SD] or progressive disease
[PD]).5,14,35 PFS and objective responses among various EGFR
mutation-subgroups were comparably investigated in our study.

3.3 Computational modeling of binding affinity in EGFR
mutant–afatinib systems

Besides the PFS- or response-related distribution analysis, a
computational study was implemented to decode the binding
affinity between afatinib and each mutation emerged in our patients.

Furthermore, this affinity or binding mode was subsequently
mapped to the recorded PFS or response, to build a mutation-
selectivity profile for afatinib.

3.3.1 Modeling of EGFR mutant–afatinib complexes. Prior
to the calculation of binding affinity, structural modeling of
mutant–afatinib covalent complexes should be accomplished.
The mutant structures were derived in advance from previous
computational studies,10,37 where side-chain prediction38,40

and loop modeling39,40 were implemented to determine each
molecular structure. Such mutant structures were adopted to
form the covalent complexes with afatinib. Specifically, our
modeling relied on molecular structural data from the protein
data bank (PDB),43 and the complex PDB:4G5P8 where afatinib
covalently binds to mutant T790M was adopted as a major
template. As a preparation, each mutant was first aligned to
the template.

It is well acknowledged that afatinib binds to a cysteine
residue of an EGFR kinase, and mutations rarely occur in this
binding site. Accordingly, treating the afatinib–cysteine block
in the template as a building block is the main idea to model
the mutant–afatinib complexes. Later, such rough models can
be optimized by AMBER10,21 and can support the binding
affinity calculation. AMBER is a software suite designed for
biomolecular simulations and analyses,10,21 and it strongly
depends on a specified force field (V) that combines different
energy components,

V ¼ Ebonded þ Enonbonded

¼
X
bonds

þ
X
angles

þ
X

dihedrals

 !
þ

X
electrostatic

þ
X

vanderwaals

 !
(1)

AMBER force fields are built upon the concept of pair-wise
charges, with each amino acid residue regarded as the under-
lying charge unit for proteins. This charge model allows indi-
vidual residues to be the building blocks for large protein
systems, without the requirement of charge refitting for each
system.21 In this regard, the afatinib–cysteine block can be
treated as a novel building block, and importantly, its atomic
charges should be derived for modeling the mutant–afatinib
complexes. To guarantee the compatibility with later AMBER
simulations, the Restrained Electrostatic Potential (RESP)
charges44 should be derived. This charge fitting model adds a
restraint to the original ESP fitting to ensure a better approxi-
mation. Two general restraint forms are as follows:

wrstr
2 ¼ a

X
j

q0j � qj

� �2
(2)

wrstr
2 ¼ a

X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qj2 þ b2

q
� b

� �
(3)

Here a and b are scale factors, and q0
j and qj, respectively,

represent the target and fitted charges of atom j. Once atomic
charges of the afatinib–cysteine building block are derived, we
can insert this block into the corresponding site of each aligned
mutant to from the covalent complex.
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Recently, R.E.D. (RESP ESP charge Derive) is a favorable
option for RESP charge derivation.45,46 It automatically derives
RESP charges and builds AMBER force field libraries for inno-
vative molecular fragments, with high reproducibility.45 Briefly,
this charge model can be summarized in three steps, namely,
(i) geometry optimization, (ii) molecular electrostatic potential
(MEP) calculation based on the optimized geometry, and(iii)
fitting the atom-centered charges to MEP.

R.E.D. relies on a quantum mechanics (QM) program, such
as the GAMESS package47 and the RESP program,44 to sequen-
tially perform the three steps. GAMESS is the software for
ab initio molecular quantum chemistry,47 and it implements
self-consistent field (SCF) calculations for all Hartree–Fock (HF)
wavefunctions. The core of SCF calculations is to approximate
the solution of the following Hartree equation:

F̂ (1)fj (1) = ejfj (1) (4)

Here F̂(1) is the one-electron Fock operator, fj (1) represents a
set of one-electron wavefunctions (molecular orbits) for atom j,
and ej denotes the orbital energies.

Unfortunately, the afatinib–cysteine block is a fragment,
thus a capping procedure should be performed before R.E.D.
calculation to better restore the atomic charges. Normally, the
acetyl (Ace) or amine (Nme) groups are used in AMBER to cap
proteins, and such caps will be removed in actual simulations.
R.E.D. was applied to reproduce the atomic charges of the
capped fragment, after which the atomic charges of the afatinib–
cysteine fragment can be extracted. In detail, a direct SCF
calculation of GAMESS, with a density convergence criterion of
1.0 � 10�6, was adopted in the geometry optimization. Depend-
ing on the optimized geometry, the rigid-body re-orientation
algorithm in R.E.D. assisted the molecular orientation and MEP
calculation, resulting in highly reproducible RESP charges.45,46

With the generated charges and force field library of the frag-
ment, mutant–afatinib complexes were successfully modeled.

Finally, afatinib was untied from the original template and
carefully added missing atoms, after which GAMESS was
adopted to optimize its geometry (convergence criterion of
1.0 � 10�8) and R.E.D. was applied to derive its charges and
the force field library. These products were used in the sub-
sequent binding affinity calculation.

3.3.2 Molecular dynamics (MD) simulations and mutant–
afatinib binding affinities. Affinity in a target–inhibitor system
is an important indicator of the inhibitory efficacy. For a
covalently bound system, the free energy difference DGbind,solv

between the complex (C) and the isolated molecules (A and B)
can roughly evaluate the binding affinity (AFF) of the system. In
our study, B and A, respectively, represent an EGFR kinase
mutant and afatinib, and C denotes the mutant–afatinib cova-
lent complex. Accordingly, the approximated binding affinity
(AFF) is formulated as follows:

AFF E DGbind,solv = GC � GA � GB (5)

where G indicates the free energy of a solvated molecular
system, and a lower DGbind,solv value implies a better affinity.

In AMBER,21 G is computed using the Molecular Mechanics/
Poisson Boltzmann (Generalized Born) Surface Area (MM/PB(GB)SA)
module. Three major portions, namely free energy in vacuum (E),
entropy contribution (�TDS) and solvation free energy (DGsolv),
comprise this computation.

G = E + DGsolv � TDS (6)

Here E can be expressed using various energy terms in eqn (7).
The entropy term �TDS, measuring the disorder of a system,
can be evaluated using normal mode analysis (NMA). The
solvation free energy DGsolv typically encompasses the polar
and nonpolar contributions in eqn (8), where DGpolar is nor-
mally approximated by a PB or GB model. Since AMBER
calculates the relative free energies for binding systems in a
more accurate way, we adopted such calculations in our study.
Normally, the entropy terms are ignored to ease the computa-
tional load.

E = Ebonds + Eangles + Edihedrals + Eelectrostatic + Evan der Waals

(7)

DGsolv = DGpolar + DGnonpolar (8)

In this regard, the free energy difference DGbind,solv can be
further expressed as follows:

DGbind;solv � DE þ DDGsolv

¼ EC � EA � EBð Þ þ DGsolv;C � DGsolv;A � DGsolv;B

� �
(9)

In order to accomplish the above free energy calculation, MD
simulations of each solvated system (A, B or C) should first be
generated using AMBER. AMBER can accurately calculate the
relative free energies of two molecules in a binding system, thus
we adopted two systems, {B,C} and {A,B}, for the calculation of
relative free energies. {B,C} was regarded as an EGFR hetero- or
homo-dimer system (template PDB:4RIW), and {A,B} was trea-
ted as a common protein–ligand non-covalent system (template
PDB:4G5P). For each system, a general solvent environment
was established in advance, as a truncated octahedron TIP3P
water box with a 10-angstrom (Å) buffer around the solute in
each direction. AMBER f f12SB (upgraded version of AMBER
ff 99SB) and gaff force fields were selected in the construction
of molecular topologies due to their broad applications. Each
solvated system was subsequently neutralized.

Prior to the key MD simulations, a solvated system should be
minimized and equilibrated, to guarantee a stable simulation.
The following series of operations were adopted in this phase
for the system {B,C}.
� Short minimization (10 000 steps) to remove bad contacts

with weak position restraints on the solute.
� 20 000-step minimization without restraints on the system,

while with a QM/MM setting on the afatinib–cysteine block.
� Heating of 50 picoseconds (ps) from 100 K to 300 K with

weak restraints on the solute.
� 25 ps density equilibration with weak restraints on the solute.
� 250 ps constant pressure equilibration at 300 K.
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Owing to a better structural optimization, we adopted two
successive minimizations. The time step in each operation was
confined to 1 femtosecond (fs) for a favorable equilibration. Each
system was validated for its equilibration through the stabilized
density, temperature and total energy curves. On an equilibrated
system, a production MD simulation of 2.5 nanoseconds (ns) was
implemented, with the QM/MM setting on the afatinib-binding
residue remained. Here, the stabilization can be verified by the
backbone RMSD curve of each solute. All our computations relied
on a high performance computer cluster (HPCC), consisting of a
master node and 44 computer nodes with 16 cores for each node.
Regarding the equilibration and production simulations, a 5-node
computation led to an approximately 39 hour run.

Trajectory frames were collected every picosecond, and
a total of 2500 frames were derived. Based on these frames,
MM/PB(GB)SA calculated the relative free energies of {B,C}.
Both the GB and PB models were applied in the calculations for
a comparable study. Using the 5-node computer cluster, each
calculation merely cost 3 hours.

For the system {A,B}, similar equilibration and production
simulations were implemented. Due to the relatively small size
of such systems, a 1.5 ns production simulation was selected to
ease the computations. All parameters passed the stabilization
test, which guaranteed a reliable simulation. The overall pro-
cedure cost 10 hours for a 5-node computation.

Based on the relative free energies derived above, binding
affinities can be roughly estimated (eqn (5): GB-relative

C �
GB-relative

A � GB). Such binding affinities can be adopted to
characterize the sensitivity of afatinib to each mutant. Appar-
ently, a lower negative value of the free energy difference
represents a larger binding affinity between a mutant and
afatinib, thus implying a better inhibitory efficacy of afatinib.
Specifically for each mutation that emerged in our patients, its
corresponding binding affinity with afatinib was calculated.
These affinity values were comparably investigated and con-
nected to the PFS or response, supporting the construction of a
mutation-selectivity profile for afatinib.
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